
 

THEME ARTICLE: Hot Chips 

The Celerity Open-Source 

511-Core RISC-V Tiered 

Accelerator Fabric: 

Fast Architectures and Design 

Methodologies for Fast Chips 

Rapidly emerging workloads require rapidly 

developed chips. The Celerity 16-nm open-source 

SoC was implemented in nine months using an 

architectural trifecta to minimize development time: a 

general-purpose tier comprised of open-source 

Linux-capable RISC-V cores, a massively parallel tier 

comprised of a RISC-V tiled manycore array that can 

be scaled to arbitrary sizes, and a specialization tier 

that uses high-level synthesis (HLS) to create an 

algorithmic neural-network accelerator. These tiers 

are tied together with an efficient heterogeneous 

remote store programming model on top of a flexible 

partial global address space memory system. 

Emerging workloads have extremely strict energy-effi-
ciency and performance requirements that are difficult to 
attain. Increasingly, we see that specialized hardware ac-
celerators are necessary to attain these requirements. But 
accelerator development is time-intensive, and accelerator 
behavior cannot be easily modified to adapt to changing 
workload properties. These factors motivate new architec-
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tures that can be rapidly constructed to address new application domains, while still leveraging 
specialized hardware and offering high performance and energy efficiency even as applications 
evolve post-tapeout. 

We propose a chip architecture called Celerity, meaning “swiftness of movement,” that embod-
ies an architectural design pattern called the tiered accelerator fabric (TAF). TAF minimizes 
time-to-market and allows the chip to maintain high performance and energy efficiency on 
evolving workloads.   

A TAF has three key architectural tiers:  

• The general-purpose tier is a set of OS-capable cores for executing complex codes like 
networking, control, and decision making.  

• The specialization tier is made of highly specialized algorithmic accelerators to target 
specific computations with extreme energy-efficiency and performance requirements.   

• The massively parallel tier is made of scalable programmable arrays of small, tightly 
coupled cores that attain high energy efficiency and flexibility for evolving workloads.  

In response to our target application domain—autonomous vision systems—the Celerity SoC 
implements the general-purpose, specialization, and massively parallel tiers using five Linux-
capable RISC-V cores, a binarized neural network (BNN) accelerator generated with HLS, and a 
“GPU-killer” 496-core RISC-V manycore array, respectively. Figure 1 shows a block diagram of 
Celerity highlighting the general-purpose tier in green, the specialization tier in blue, and the 
massively parallel tier in red. To bind these components together, we support a heterogeneous 
remote store programming model that allows core and accelerators to write to each other’s mem-
ories through a partitioned global address space. Layered upon this model are two novel synchro-
nization mechanisms: load-reserved, load-on-broken-reservation (LR-LBR), which extends load-
reserved store conditional for efficient producer-consumer synchronization; and the token queue, 
which uses LR-LBR to achieve efficient producer-consumer transfer of resource ownership. This 
architecture enabled us to design and implement Celerity in only nine months through open-
source and agile hardware techniques. 

 

Figure 1. Celerity block diagram. The general-purpose tier (shown in green) has a five-core Rocket 
core complex, the specialization tier (shown in blue) has a BNN accelerator, and the massively 
parallel tier (shown in red) has a 496-core tiled manycore array. 
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Celerity is an open-source 5x5-mm tiered accelerator fabric SoC taped out in Taiwan Semicon-
ductor Manufacturing Company (TSMC) 16-nm Fin field-effect transistor (FinFET) Compact 
(FFC) with 385 million transistors. In addition to the previously mentioned 501 RISC-V cores, it 
features an ultra-low-power 10-core RISC-V manycore array powered by an on-chip DC/DC 
low-dropout (LDO) regulator.1 The 10-core array shares the same code as the larger 496-core 
array. The architecture has separate clock domains for I/O (400 MHz), the manycore (1.05 GHz), 
and the rest of the chip (625 MHz). Figure 2(a) shows the SoC’s floorplan image from our CAD 
tools. Figure 2(b) shows the layout of Celerity. Finally, Figure 2(c) shows a photomicrograph. 
The design’s entire source base is available at http://opencelerity.org. See the sidebar, “Achiev-
ing Celerity with Celerity,” for the methodologies used to design and tapeout the Celerity chip in 
less than nine months. 

 

Figure 2. Detailed Celerity images. The floorplan (a) shows the relative sizes and positions of the 
various blocks in the SoC. The layout (b) shows the physical chip attributes where the red area 
represents SRAM, the blue area represents logic, and the yellow area represents interconnection 
between blocks. The silicon die photo (c) shows the real chip taken from a photomicrograph. 

THE CELERITY ARCHITECTURE

When addressing emerging application domains with a tiered accelerator fabric, a number of key 
decisions must be made. The specialization tier is among the most important, because it is the 
most integral in determining the chip’s super-capabilities, and it requires the most effort to de-
sign. The choice of general-purpose tier will be determined by feature set (for example, security, 
debugging features, or raw irregular computation) but also by the availability and expense of 
processor IP cores. ARM offers many variants, but low-non-recurring-engineering (NRE) open-
source versions of RISC-V are becoming available, like the Berkeley Rocket processor core used 
in our design. The massively parallel tier could be comprised of ARM or Advanced Micro De-
vices (AMD) GPU IPs. Alternatively, our open-source tiled manycore architecture, BaseJump 
Manycore, is free and allows for fast and flexible scaling from one to 1 million+ cores, at an area 
cost of 1 mm2 per 42 cores in 16 nm. We explore each tier in the following sections, but first dis-
cuss how these components are tied together. 

Partitioned Global Address Space  

Communication among accelerators and cores in the three tiers is accomplished through a parti-
tioned global address space over a unified mesh network-on-chip (NoC). When a remote store is 
performed, a wide single-word packet is injected into the NoC, which contains x,y coordinates of 
the destination core, the local word address at that core, 32 bits of data to store, and a byte mask. 
When the message arrives at the destination, the address is translated and the store is performed. 
Ordering of messages sent from one node to another is maintained. The parameterized NoC in 
Celerity was configured for 512 coordinates (x = 0..15, y = 0..31) and 22-bit addresses. The 
manycore’s cores map one-to-one to all of these addresses except y = 31, which demarcates the 
south edge of the manycore. The remaining 16 positions on the south edge are used for four par-
allel connections to the BNN and four connections to the Linux-capable Rocket cores.    
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While remote loads, such as those found in the Adapteva parallel architecture,2 are easy to add 
and could arguably make the system more programmable, they have high round-trip latency 
costs and lead users astray by offering a high-convenience, low-performance mechanism. Re-
mote stores do not incur such a latency penalty because they are pipelined and can therefore be 
issued once per cycle.  

When a remote store is performed, a local credit counter will be decremented at the sender. 
When the store is successful at the remote node, a store credit is placed on the store network that 
is routed back to the original tile on a separate 9-bit physical network, incrementing the counter. 
A RISC-V fence instruction on either manycore or Rocket core is used to detect whether any 
outstanding remote stores exist, allowing a core to pause for memory traffic to finish during a 
barrier.  

THE GENERAL-PURPOSE TIER 

For our SoC to support complex software stacks, exception handling, and memory management, 
we instantiated five Berkeley RISC-V Rocket cores running the RV64G ISA. The Rocket core is 
an open-source,3 five-stage, in-order, single-issue processor with a 64-bit pipelined FPU and 
size-configurable non-blocking caches. Each Rocket core can run an independent Linux image. 
This gives us the flexibility to run SPEC-style applications and network stacks like TCP/IP. Four 
Rocket cores connect directly to the massively parallel tier using four parallel remote store links 
on the global mesh NoC. One Rocket core connects directly to the specialization tier through a 
dedicated Rocket custom coprocessor (RoCC) interface. These connections are made using the 
Berkeley RoCC interface. L1 data and instruction caches are configured at 16 KBs each. 

When remote stores are done to the Rocket cores, they go directly into the four Rocket cores’ 
caches, potentially causing cache misses to DRAM. Remote store addresses are translated using 
a segment address register that maps the 22-bit address space into the Rocket’s 40-bit address 
space. Rocket cores issue remote stores through a single RoCC instruction and can, for example, 
do remote stores to other Rocket cores, to any manycore, or to any of the BNN input links. Re-
mote stores to manycore tiles are used to write instruction and data memories, as well as to set 
configuration registers, such as freeze registers and arbitration policies for the local data 
memory.  

THE MASSIVELY PARALLEL TIER 

To achieve massive amounts of programmable energy-efficient parallel computation, we wanted 
an architecture with a high density of physical threads per area. Therefore, we implemented a 
496-core tiled manycore array4 that interconnects low-power RISC-V Vanilla-5 cores using a 
mesh interconnection network. Each tile contains a simple router and a Vanilla-5 core. Our in-
house-developed Vanilla-5 cores are five-stage, in-order, single-issue processors with 4-KB in-
struction and data memories that use the RV32IM ISA. The manycore uses a strict remote store 
programming model,5 giving us a highly programmable array to maintain high performance as 
workloads evolve post-tapeout. A key contribution of our work is to extend the remote store pro-
gramming model to incorporate heterogeneous processor types and to support fast producer-con-
sumer synchronization. 

NoC Design  

The manycore’s mesh NoC design, which facilitates the remote store fabric that ties the chip to-
gether, targets extreme area efficiency using only a single physical network for data transfer, no 
virtual channels, single-word/single-flit packets, deterministic x,y dimension-ordered routing, 
and two-element router input buffers. Head-of-line blocking and deadlock are eliminated be-
cause remote stores can always be written to a core’s local memory, removing the word from the 
network. Connections between neighboring tiles are 80-bit wide full duplex, running at 1 GHz, 
allowing address, command, and data information to be routed in a single wide word, and each 
hop takes one cycle. To generate packets that go off the array’s south side, to the specialized and 
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general-purpose tiers, a NoC client performs a store to a memory address whose x,y coordinate is 
beyond the coordinates of manycore. Both local and remote stores use the same standard store 
word, half-word, and byte instructions from the ISA.   

Remote Stores  

Each time a store is about to be performed, the high bit of the address determines if the store ad-
dress is local (0) or remote (1). The local address space uses the remaining 31 bits to determine 
the memory address. The remote address space uses the next 9 bits as a destination coordinate (x 
= 0..15, y = 0..31) of the target core on the NoC. The remaining 22 bits are translated at the desti-
nation into a local address, and the store is performed. 

LBR  

The manycore features an extension to the LR store-conditional (LR-SC) atomic instructions 
called LR-LBR. LR operates much like in LR-SC by performing a load and then adding the tar-
get address to a reservation register, which is then cleared if an external core writes to that ad-
dress. LBR is a new instruction that places the core’s pipeline in a low-power mode until another 
core remote stores to that address and breaks the reservation, at which point the core will wake 
up and perform a load on the target address. Typically, user code will load a memory location’s 
value with LR, branch away if it is satisfied with the value (a ready flag is set, or a FIFO pointer 
has sufficiently advanced), and otherwise fall through to a LBR to wait for it to change, so it can 
be rechecked. 

Token Queue 

Our design shows that tight producer-consumer synchronization can be layered on top of remote 
store programming. By using the LR-LBR instruction extension, we implemented the token 
queue, a software construct used to asynchronously transfer control of buffer address between 
producer and consumer tiles. The consumer will allocate a circular buffer to which tokens can be 
enqueued and dequeued. A token can be a simple data value, a pointer to a memory buffer, or 
identifiers for more abstract resources. Producer and consumer can consume different quantities 
of tokens at each step. By enqueuing a set of tokens, the producer is transferring read/write own-
ership of those resources to the consumer. By dequeuing a set of tokens, the consumer is trans-
ferring write ownership of the resource back to the producer. The producer and consumer each 
have local copies of head and tail pointers to the circular buffer, but only the producer will mod-
ify the head pointers, and only the consumer will modify the tail pointers. The remote versions of 
the pointers will be updated after the local versions, similar to a clock-domain-crossing FIFO. 

The producer tile confirms there is enough space in the token queue to enqueue a particular 
group of tokens, using LR-LBR to wait in low-power mode for remote updates to the local tail 
pointers if there is not enough space in the queue. Then, it will send the corresponding data 
through remote stores. After that is done, the producer will update the head pointers through lo-
cal and remote stores.  

The consumer confirms that it has enough tokens in the token queue to proceed, using the LR-
LBR instructions to wait in low-power mode until the head pointer is updated by the producer, 
and checking if enough tokens have been enqueued. When there is enough, the consumer will 
wake up and start accessing the data represented by the new tokens in the buffer. When done, the 
consumer will dequeue the tokens by updating the tail pointers and proceeding back to consum-
ing the next set of tokens. 

Programming Models  

The token queue and remote store programming models are particularly well suited for program-
ming with the StreamIt6 programming model. We are also investigating libraries that will enable 
CUDA-style applications to be ported more easily, but emphasizing an execution model that is 
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better able to leverage the inherent locality in parallel computation rather than using double data-
rate type five synchronous graphics random-access memory (GDDR5) DRAM as the primary 
communication mechanism between cores. 

THE SPECIALIZATION TIER

Deciding which workload parts get implemented in the specialization tier takes careful consider-
ation. In Celerity, we chose to implement a BNN accelerator. The architecture and reasoning for 
implementing a BNN in the specialization tier are discussed here. 

Choosing the Neural Network  

Deep convolutional neural networks (CNNs) are now the state of the art for image classification, 
detection, and localization tasks. However, using CNN software implementations for real-time 
inference in embedded platforms can be challenging due to strict power and memory constraints. 
This has sparked significant interest in hardware acceleration for CNN inference, including our 
own prior work on FPGA-based CNN accelerators.7 Given this context, we chose to use flexible 
image recognition as a case study for demonstrating the potential of tiered accelerator fabrics in 
general, and the Celerity SoC specifically.  

Most prior work on CNN accelerators uses carefully hand-crafted digital VLSI architectures and 
represent the weights and activations in 8- to 16-bit fixed-point precision. Recent work on BNNs 
has demonstrated that binarized weights and activations (+1, -1) can, in certain cases, achieve 
accuracy comparable to full-precision floating-point CNNs.8 BNNs’ key benefit is that the com-
putation in convolutional and dense layers can be realized with simple exclusive-negated-OR 
(XNOR) and pop-count operations. This removes the need for more expensive multipliers and 
adder trees, saving area and energy. BNNs can also achieve a substantial gain (8-16X) in the 
memory size of weights compared to a fixed-point CNN using the same network structure, mak-
ing the model easier to fit on-chip. Additionally, there is an active body of research on BNNs 
attempting to further improve classification performance and reduce training time. 

We employ the specific BNN model shown in Figure 3(a) based on Courbariaux et al.8 This 
model includes six convolutional, three max-pooling, and three dense (fully connected) layers. 
The input image is quantized to 20-bit fixed-point, and the first convolutional layer takes this 
representation as input. All remaining layers use binarized weights and activations. BNN-
specific optimizations include eliminating the bias, reducing the batch norm calculation’s com-
plexity, and carefully managing convolutional edge padding. This network achieves 89.8-percent 
accuracy on the CIFAR-10 dataset. 

 

Figure 3. BNN accelerator. 
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Performance Target 

We target ultra-low latency, requiring a batch size of one image and a throughput target of 60 
classifications per second to enable real-time operation. 

Creating and Optimizing the Specialization Tier  

We use a three-step process to map applications to tiered accelerator fabrics. First, we implement 
the algorithm using the general-purpose tier for initial workload characterization and to identify 
key kernels for acceleration. Second, we can choose to accelerate the algorithm using either the 
specialization tier or the massively parallel tier. Finally, we can further improve performance 
and/or efficiency by cooperatively using both the specialization tier and the massively parallel 
tier.  

Establishing the Functionality of the Specialization Tier  

In the first step, we implemented the BNN using the general-purpose tier to characterize the 
computational and storage requirements of each layer. Figure 3(b) shows the number of binary 
weights and binary activations per layer in addition to the execution time breakdown, assuming a 
very optimistic embedded microarchitecture capable of sustaining one instruction per cycle. The 
total estimated execution time for the BNN software model (estimated to be around 2 billion in-
structions) on the general-purpose tier would be approximately 200X slower than the perfor-
mance target. Although the binarized convolutional layers require more than 97 percent of the 
dynamic instructions, preliminary analysis suggests that all nine layers must be accelerated to 
meet the performance target. The storage requirements for activations are relatively modest, but 
the storage requirements for weights are non-trivial and require careful consideration. 

Designing the Specialization Tier  

In the second step, we implemented the BNN using a configurable application-specific accelera-
tor in the specialization tier. This accelerator was designed to integrate with a Rocket core in the 
general-purpose tier through the RoCC interface. Although the massively parallel tier could be 
used to implement the BNN at speed, superior energy efficiency could be attained through spe-
cialization. Figure 3(c) shows the BNN accelerator architecture. The BNN accelerator consisted 
of modules for fixed-point convolution (first layer), binarized convolution, dense layer pro-
cessing, weight and activation buffers, and a DMA engine to move data in and out of the buffers. 
The BNN accelerator processes one image layer at a time and can perform 128 binary multiplica-
tions (XNORs) per cycle using two convolvers. Any non-binarized computation is performed 
completely within each module to limit the amount of non-binarized intermediate data stored in 
the accelerator buffers and/or memory system. The activation buffers are large enough to hold all 
activations; however, in this design, the sizeable binarized weights necessitated off-chip storage 
using the general-purpose RoCC memory interface. The binarized convolution unit includes two 
convolvers implemented with a flexible line buffer based on Zhao et al.7 

Combining the Massively Parallel and Specialization Tiers 

In the third step, we explored the potential for cooperatively using both the specialization tier 
and the massively parallel tier. Our early analysis suggested that repeatedly loading the weights 
from off-chip would significantly impact both performance and energy efficiency. We imple-
mented a novel mechanism that enables cores in the massively parallel tier to send data directly 
to the BNN. To classify a stream of images, we first load all data memories in the massively par-
allel tier with the binarized weights. We then repeatedly execute a small remote-store program 
on the massively parallel tier; each core takes turns sending its portion of the binarized weights 
to the BNN in just the right order. The BNN can be configured to read its weights from queues 
connected to the massively parallel tier instead of from the general-purpose tier. 
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The Benefits of HLS 

We employed HLS to accelerate time-to-market and to enable significant design-space explora-
tion for the BNN algorithm. The BNN model was first implemented in C++ for rapid algorithmic 
development, before adding HLS-specific pragmas and cycle-accurate SystemC interface speci-
fications. Cadence Stratus HLS transformed the SystemC code into cycle-accurate RTL. Very 
similar C++ test benches were used to verify the BNN algorithm, the SystemC BNN accelerator, 
the generated BNN RTL, and the Rocket core running the BNN accelerator. This HLS-based de-
sign methodology enabled three graduate students with near-zero neural-network experience to 
rapidly design, implement, and verify a complex application-specific accelerator. 

PERFORMANCE ANALYSIS OF THE 
SPECIALIZATION TIER 

Table 1 shows the performance and power of optimized BNN implementations on the Celerity 
SoC and other platforms. Although each platform uses a different implementation methodology, 
technology, and memory system, these results can still provide a rough high-level comparison. 
These results suggest that the Celerity SoC can potentially improve performance/Watt by more 
than 10X compared to our prior FPGA implementation7 and more than 100X compared to a mo-
bile GPU. 

Table 1. Performance comparison of optimized BNN implementations on different platforms. 

 

*GPT = general-purpose tier. SpT = specialization tier with the weights stored in the general-purpose tier’s cache. SpT + 
MPT = specialization tier with the weights stored in the massively parallel tier. mGPU = Nvidia Jetson TK1 embedded 
GPU board. CPU = Intel Xeon E5-2640. GPU = Nvidia Tesla K40. FPGA = Xilinx Zynq-7000 SoC.  

In the table, runtimes measure processing a single image from the CIFAR-10 dataset. The power 
of GPT, SpT, and SpT + MPT is estimated using post-place-and-route gate-level simulations 
with limited clock-gating, as provided in the Celerity SoC (only gating the entire MPT when un-
used). Aggressive clock-gating assumes an alternate design that can gate unused cores/accelera-
tors in the GPT, SpT, and MPT. Celerity SoC power estimates do not include DRAM power.  

NEW DIRECTIONS FOR FAST HARDWARE DESIGN 

Our research examines the speedy construction of new classes of chips in response to emerging 
application domains. Our approach was successful due to a heterogeneous architecture that offers 
fast construction, scalability, and heterogeneous interoperability through the remote store pro-
gramming model and advanced producer-consumer synchronization methods like LR-LBR and 
token queues. At the same time, our design methodology combines HLS for specialized tier ac-
celerator development, open-source technology like Rocket and BaseJump for key IP blocks, fast 
motherboard and socket development and FPGA firmware, and principled SystemVerilog pa-
rameterized component libraries like BaseJump Standard Template Library (STL). Finally, our 
agile chip development techniques enabled us to quickly tape out a 16-nm design with a team of 
graduate students geographically distributed across the US. Each approach targets the key goal 
of creating new classes of chips quickly and with low budgets. We hope that the lessons from 
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our experience will inspire new classes of chips, unlocking the creativity of future students, ar-
chitects, and chip designers alike. 

SIDEBAR: ACHIEVING CELERITY WITH CELERITY: 
FAST DESIGN METHODOLOGIES FOR FAST CHIPS 

Celerity was designed under the DARPA Circuit Realization at Faster Timescales (CRAFT) pro-
gram, whose goal was to reduce the design time for taping out complex SoCs. Our team de-
signed and taped out Celerity in just nine months from process design kit (PDK) access, which 
included: 

• Coordinating graduate students spread across four universities (Batten/Zhang’s team 
designed the specialized tier, Taylor’s team designed the general-purpose and massively 
parallel tiers, and Dreslinski’s team implemented the 16-nm CAD flow; all three teams 
contributed to physical design, with Dreslinski leading.) 

• Developing an implementation flow for an advanced 16-nm FinFET node 
• Satisfying CRAFT program constraints with only $1.3 million USD for NRE costs 

To meet the aggressive schedule for Celerity, we developed three classes of techniques to de-
crease design time and cost: reuse, modularization, and automation. 

Reuse 

Reuse for hardware design accelerates both design and implementation time, as well as testing 
and verification time. For Celerity, we made heavy reuse of open-source designs and infrastruc-
tures. We leveraged the Berkeley RISC-V Rocket core generator3 to implement the SoC’s gen-
eral-purpose tier, allowing the reuse of Rocket’s testing infrastructure and the RISC-V toolchain. 
The same infrastructure was used for the manycore array’s Vanilla-5 core. Because validation is 
usually more work than design, inheriting a robust test infrastructure greatly reduced overall de-
sign time. We leveraged the RoCC interface for all connections to the general-purpose tier. As 
part of our learning process with RoCC, we created the “RoCC Doc,” located at http://openceler-
ity.org. 

Beyond the RISC-V ecosystem, we leveraged the BaseJump open-source hardware components, 
which can be found at http://bjump.org. BaseJump provides open-source infrastructure and 
frameworks for designing and building SoCs, including the BaseJump STL9 for SystemVerilog, 
the BaseJump SoC framework, BaseJump Socket, BaseJump Motherboard, BaseJump FPGA 
bridge, and BaseJump FMC bridge, as seen in Figure 4. In Celerity, we built all of our RTL us-
ing the Basejump STL and SoC framework’s pre-validated components and unit testing suite. 
We ported the BaseJump Socket to the CRAFT flip-chip package and will use the BaseJump 
Motherboard for the final chip. 

By leveraging the unit testing suite from BaseJump and RISC-V testing infrastructure, we could 
focus our verification efforts primarily on integration testing. Using an FPGA in place of the 
SoC, the BaseJump infrastructure allows for designs to be simulated in the same two board envi-
ronment they will be running in post-tapeout. All firmware and test-bench code written during 
simulation will be reused during bring-up once the chip returns from fabrication, giving us a ro-
bust verification and validation suite. 

Reuse is also enabled by extensibility and parameterization. Due to the scalable nature of tiled 
architectures, BaseJump STL’s parameterization, and the flexibility of our backend flow method-
ology, we were able to extend the BaseJump manycore array from 400 cores to 496 to absorb 
free die area. By changing just nine lines of code, we could fully synthesize, place, route, and 
sign off on the new design in a span of three days. 
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Figure 4. BaseJump open-source hardware components. The SoC framework, including NoC and 
high-speed off-chip double data-rate (DDR) interface, were implemented using STL, as was the 
manycore. The fabricated chip conforms to the socket definition and is placed in the motherboard’s 
socket. The motherboard connects through an FMC connector to a ZedBoard hosting RISC-V 
testing infrastructure. Communication between the motherboard and ZedBoard is handled with the 
open-source FMC bridge code. 

Modularization 

One key challenge for this project was that our design teams were spread across four physical 
locations. Fine-grained synchronization between teams was not feasible, so we developed tech-
niques to modularize both our design interfaces on chip and our interfaces between teams. 

Many techniques we used can be compared to an agile design methodology as it applies to hard-
ware. We used a bottom-up design flow to build, iterate, and integrate smaller components into a 
larger design. We also used a SCRUM-like task management system, where we clearly identified 
and prioritized various tasks and issues, minimized synchronization issues, and distributed tasks 
across team members without assigning rigid specialized roles. 

We also defined tape-in10 deadlines. These are simpler designs that were tapeout ready before the 
deadline. This allowed us to stress-test our physical design flow early in the design cycle, in ad-
dition to identifying big-picture problems early on, which we found particularly useful when 
dealing with an advanced technology node. Each successive tape-in incorporated an additional IP 
block, building up to what we see in Celerity. We performed daily chip builds to ensure no 
changes broke the overall design and that we always had a working design to tapeout. 

To help modularize the RTL, chip component interfaces were established early. We selected 
RoCC early on for on-chip communication and BaseJump for off-chip communication. Because 
we used BaseJump STL’s pervasive latency-insensitive interfaces, our architecture-specific de-
pendencies between components were minimized.  

Automation 

CRAFT’s tight time constraints required that we employ higher degrees of automation to accel-
erate the design cycle. We developed an abstracted implementation flow to minimize the 
changes necessary for different designs to go from synthesis through sign-off. We combined 
vendor reference scripts with an integration layer to coalesce implementation parameters and 
separate scripts into design-specific and process-specific groups. We could then quickly identify 
which scripts needed to be modified between designs. 

We also took advantage of emerging tools and methodologies. We used the PyMTL framework 
for rapid test-bench development using high-level languages and abstractions rather than low-
level SystemVerilog. In our BNN accelerator development, we used HLS to drastically improve 
design space exploration and implementation time. 
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